

Carbohydrate Research 343 (2008) 785-792

Carbohydrate RESEARCH

Note

Synthesis of S-glycosyl thiophosphates, thiophosphonates and thiophosphinates by the Michaelis–Arbuzov rearrangement of anomeric thiocyanates

Marta Piekutowska and Zbigniew Pakulski*

Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
Received 5 November 2007; received in revised form 7 December 2007; accepted 12 December 2007
Available online 23 December 2007

Abstract—Reaction of anomeric thiocyanates with a series of *O*-alkyl or *O*-trimethylsilyl phosphite, phenylphosphonite and diphenylphosphinite derivatives afforded the corresponding *S*-glycosyl thiophosphates, thiophosphonates and thiophosphinates in good yields. These derivatives had been previously applied as glycosyl donors in the synthesis of benzyl glycosides and disaccharides with excellent stereoselectivity.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Thiocyanates; Thiophosphates; Thiophosphonates; Thiophosphinates; Glycosyl donors

The effectiveness of glycosylation is a key problem in oligosaccharide synthesis and strongly depends upon the nature of the leaving group at the anomeric centre and its method of activation. Numerous versatile leaving groups are known: however, a universally applicable method for glycoside bond formation is not available. Therefore, the need for new, readily accessible, stable and reactive glycosyl donors still persists. During our studies directed towards the synthesis of oligosaccharides² we focused our attention on the leaving groups containing a phosphorus-sulfur bond. Recently, we reported that S-glycosyl thiophosphates, thiophosphonates and thiophosphinates are very promising glycosyl donors and give glycosides and disaccharides with excellent stereoselectivity.³ Numerous synthetic methods for the introduction of a phosphorothicate

moiety into a saccharide structure have been reported⁴ but they often lead to a mixture of anomers or O,S-isomerisation. S-Glycosyl thiophosphates have also been used in the synthesis of glycosyl cyanides and glycosyl 1-O-acyl esters,⁵ S-glycosyl thiophosphonates for studies of phosphorus stereochemistry,⁶ whereas S-glycosyl thiophosphinates have not been described yet.

The Michaelis–Arbuzov reaction (also known as the Arbuzov reaction or Arbuzov rearrangement) is well known and widely used in general organic chemistry for the creation of carbon–phosphorus bonds.⁷ It has also been demonstrated that alkyl and aryl thiocyanates are highly reactive reagents in this reaction.⁸ The reaction involves S–CN bond fission and gives alkyl cyanates and *O*,*O*,*S*-trialkyl thiophosphates (Scheme 1).

$$R^{1}R^{2}P-OR + R^{3}SCN \longrightarrow \begin{array}{c} R^{1}R^{2}P^{+}-SR^{3} \\ O-R \\ CN^{-} \end{array} \longrightarrow \begin{array}{c} R^{1}R^{2}P-SR^{3} + RCN \\ O \\ O \end{array}$$

Scheme 1.

^{*}Corresponding author. Fax: +48 22 632 66 81; e-mail: pakul@icho.edu.pl

Therefore, organic thiocyanates are potentially very promising substrates for the highly regioselective preparation of unsymmetrical O,O,S-trialkyl thiophosphates. In this regard, anomeric thiocyanates 10,11 are particularly interesting starting materials for the preparation of anomeric thiophosphorus derivatives.

In this paper, we report a highly efficient method for the preparation of S-glycosyl thiophosphates, thiophosphonates and thiophosphinates via Michaelis— Arbuzov reaction of glycosyl thiocyanates with simple phosphorus reagents.

As we described earlier,³ peracetylated glycosyl thiocyanates are thermally unstable and at high temperature (usually required for the Arbuzov reaction) easily isomerise to the corresponding glycosyl isothiocyanates. We decided, therefore, to use the much more thermally stable perbenzoylated glycosyl thiocyanates 1–4 (Fig. 1) as the starting materials. These compounds are readily available by the treatment of the corresponding glycosyl bromides with potassium thiocyanate in the presence of 18-crown-6,¹⁰ or by a slightly modified method in which the relatively expensive crown ether is replaced by 1-butyl-3-methylimidazolium chloride ([bmim]Cl) without decreasing the yields.

Reaction of 2,3,4,6-tetra-O-benzoyl-D-mannopyranosyl bromide with potassium thiocyanate afforded the known α -D-mannopyranosyl thiocyanate **4**, and small amount of its β -epimer **3** which was not characterised before. The $^1J_{1H-13C}$ coupling constants of 179.5 Hz observed at the anomeric carbon atom of **4**, and 160.8 Hz of **3** clearly characterise the α - and β -epimers, respectively. 12

Initially, the Michaelis–Arbuzov reaction with the tetra-O-benzoyl-D-glucose-derived thiocyanate 1 was carried out in neat triethylphosphite [P(OEt)₃] at various temperatures and afforded the expected thiophosphate 5 (Fig. 1). The highest yield of thiophosphate 5 (51%) was obtained at 120 °C. Similar reaction with tributyl-phosphite afforded thiophosphate 8. The same reactions performed on galactopyranosyl thiocyanate 2 and β -mannopyranosyl thiocyanate 3 afforded the expected

glycosyl thiosphosphates 6, 7 and 9, 10 in moderate yields; the results are summarised in Table 1.

Based on the ³¹P NMR data, the purity of thiophosphates 5–7 obtained by the treatment of thiocyanates 1–3 with triethylphosphite fluctuated between 77% and 99% and the products were contaminated with H₂P(O)(OEt), HP(O)(OEt)₂ and HOP(O)(OEt)₂. The purities of compounds 8–10 obtained by the treatment of thiocyanates 1–3 with tributylphosphite were only 30–46%; byproducts including HP(O)(OBu)₂ and HOP(O)(OBu)₂ were formed.³

Unsatisfying reaction yields and contamination of the desired products with inseparable compounds prompted us to search for more efficient organophosphorus reagents. A known method of activation of the phoshorus(III) acids is their conversion into the trimethylsilyloxy derivatives. This approach was successful; we have found that the reaction of thiocyanates 1–3 with diethyltrimethylsilylphosphite [(EtO)₂P–OTMS] proceeded smoothly at slightly elevated temperature (even room temperature) and afforded (after simple chromatographic separation) pure S-glycosyl thiophosphates 5–7 in very good yields (Table 1).

Application of dimethylphenylphosphonite [PhP-(OMe)₂] (instead of triethylphosphite) in the reaction with glycosyl thiocyanates 1–3 under similar conditions afforded the expected *S*-glycosyl thiophosphonates 11–13 (Fig. 1) as an inseparable mixture of diastereo-isomers and in acceptable yields. The purity of thiophosphonates 11–13 varied between 70% and 99%; HP(O)(Ph)(OMe) and HP(O)(Ph)(OH) were detected as contaminants by ³¹P NMR.³

Again, the use of silylated phenylphosphonite—ethyl-trimethylsilylphenylphosphonite¹⁴ [PhP(OEt)(OTMS)]—instead of dimethylphenylphosphonite in the reaction with glycosyl thiocyanates 1–3 gave S-glycosyl thiophosphonates 14–16 in much higher yield, and the products were completely free from any undesirable byproducts (Table 1).

Extension of these reaction conditions to methyl diphenylphosphinite [Ph₂P(OMe)] as a starting material

Figure 1.

Table 1. The Michaelis-Arbuzov rearrangement of glycosyl thiocyanates 1-4

RSCN	$R_2P(OR')$	Product	Temp ^a (°C)	Time	Isolated yield (%)
BZO O SCN BZO 1	P(OEt) ₃	5	120	30 min	51 ^b
	$(EtO)_2P$ -OTMS	5	rt	24 h	70
	(EtO) ₂ P-OTMS	5	50	1 h	82
	$P(OBu)_3$	8	120	30 min	33 ^b
	$PhP(OMe)_2$	11	40	30 min	51 ^b
	PhP(OEt)(OTMS)	14	rt	18 h	90
	PhP(OEt)(OTMS)	14	40	1 h	94
	Ph ₂ P(OMe)	17	40	30 min	20^{b}
	$Ph_2P(OMe)$	17	80	10 min	25 ^b
	$Ph_2P(OTMS)$	17	rt	18 h	80
	$Ph_2P(OTMS)$	17	40	1 h	71
	$P(OEt)_3$	6	80	2 h	30 ^b
BzO OBz O SCN BzO 2	$(EtO)_2P$ -OTMS	6	rt	24 h	68
	(EtO) ₂ P–OTMS	6	60	2 h	77
	P(OBu) ₃	9	80	8 h	30 ^b
	PhP(OMe) ₂	12	40	30 min	53 ^b
	PhP(OEt)(OTMS)	15	rt	18 h	85
	PhP(OEt)(OTMS)	15	40	1 h	83
	Ph ₂ P(OMe)	18	rt	24 h	$20^{\rm b}$
	$Ph_2P(OMe)$	18	40	30 min	25 ^b
	$Ph_2P(OTMS)$	18	rt	18 h	74
	$Ph_2P(OTMS)$	18	40	1 h	71
BzO BzO SCN	$P(OEt)_3$	7	80	3.5 h	24 ^b
	(EtO) ₂ P-OTMS	7	rt	24 h	68
	(EtO) ₂ P–OTMS	7	40	3 h	68
	P(OBu) ₃	10	120	30 min	40 ^b
	$PhP(OMe)_2$	13	50	1 h	41 ^b
	PhP(OEt)(OTMS)	16	rt	24 h	85
	PhP(OEt)(OTMS)	16	40	90 min	89
	Ph ₂ P(OTMS)	19	rt	24 h	82
	$Ph_2P(OTMS)$	19	40	90 min	66
BzO BzO O SCN	(EtO) ₂ P-OTMS	20	rt	24 h	35
	(EtO) ₂ P–OTMS	20	60	24 h	62
	(EtO) ₂ P–OTMS	20	100	4 h	53
	PhP(OEt)(OTMS)	21	rt	24 h	42
	PhP(OEt)(OTMS)	21	60	24 h	51
	PhP(OEt)(OTMS)	21	100	4 h	33
	Ph ₂ P(OTMS)	22	60	24 h	20°

^a Bath temperature.

led to *S*-glycosyl thiophosphinates **17** and **18** (Fig. 1), but in very low yields. Thiocyanate **3** was unreactive under these reaction conditions. In this case, due to the instability of the final products at higher temperatures, the reactions were conducted below 80 °C. Because of their high polarity, chromatographic separation of *S*-glycosyl thiophosphinates **17** and **18** was relatively simple and purities of the products usually exceeded 95%; Ph₂P-(O)(OMe), Ph₂P(OH) and H₂P(O)(OMe) were detected as side products by ³¹P NMR.³ In contrast to the above reaction, the use of trimethylsilyldiphenylphosphinite¹⁵ [Ph₂P(OTMS)] afforded *S*-glycosyl thiophosphinates **17–19** in excellent yield. All products were pure and free from any contaminants (Table 1).

The unique chemical properties of α -D-mannopyranosyl thiocyanate **4** should be mentioned here. As we had

observed previously, α-D-mannopyranosyl thiocyanate 4 was completely unreactive towards Grignard reagents. 10 This compound also remained unchanged during the Michaelis-Arbuzov rearrangement, and we did not observe any reaction with triethylphosphite, dimethylphenylphosphonite or methyldiphenylphosphinite. The reason for the lack of reactivity of α-D-mannopyranosyl thiocvanate 4 remains unknown. However, when the more active silvlated phosphorus(III) acid derivatives were used, the Michaelis-Arbuzov reaction took place. Although the required reaction temperature was higher and the yields were usually lower than for the corresponding β-D-manno isomer, S-glycosyl thiophosphate 20 and S-glycosyl thiophosphonate 21 were isolated in good yield (Fig. 1, Table 1). Reaction of thiocyanate 4 with trimethylsilyldiphenylphosphinite afforded S-glycosyl

^b Purity determined by ³¹P NMR spectroscopy and the yield was calculated for pure product.

^c Product decomposed during chromatographic purification; contains significant amount of thiol 23. Pure thiol 23 (50%) was also isolated.

thiophosphinate 22, which was confirmed by ³¹P NMR spectra of the crude reaction mixture (in which a suitable signal at 40.6 ppm was observed). This compound was, however, unstable and almost complete decomposition of 22 occurred during flash chromatography and vielded several decomposition products from which only thiol 23¹⁶ (obtained in 50% yield) could be identified. A small amount (20%) of the desired product 22 was also isolated but contaminated with a significant amount of 23. We suppose that thiol 23 was obtained by the hydrolysis of S-glycosyl thiophosphinate 22 in the presence of residual water on silica. This process may be considered as similar to the known transesterification reaction of simple alkyl and aryl thiophosphorus esters leading to the corresponding thiols. ¹⁷ It should be noted that traces of 23 were also detected during chromatographic purification of S-glycosyl thiophosphonate 21.

In conclusion, we have developed an efficient synthesis of S-glycosyl thiophosphates, thiophosphonates and thiophosphinates from anomeric thiocyanates by treatment with diethyltrimethylsilylphosphite, ethyltrimethylsilylphenylphosphinite or trimethylsilyldiphenylphosphinite, respectively. It should be emphasised that in all the cases studied, the configuration at the stereogenic centre connected to the sulfur atom (anomeric position) was fully preserved. Reactions were also regioselective affording S-glycosyl derivatives as the only products.

1. Experimental

1.1. General methods

TLC was performed on silica gel HF-254 and column chromatography on silica gel 230-400 mesh (Merck). The ¹H, ¹³C and ³¹P NMR spectra were recorded at 303 K with a Varian Mercury 400BB spectrometer (400 MHz, 100 MHz and 161.9 MHz, respectively). TMS was used as the internal standard for ¹H and ¹³C NMR spectra, and H₃PO₄ as the external standard for ³¹P NMR spectra. Signals of the aromatic groups observed for typical values were omitted for simplicity. High-resolution mass spectra (HR-MS) were measured with a MARINER mass spectrometer. Optical rotations were measured with a JASCO P-1020 automatic polarimeter. IR spectra were recorded on Perkin-Elmer 1640 FT-IR spectrophotometer. Unless otherwise stated, all products were isolated as a foam. Structural assignments of the S-glycosyl derivatives prepared above were based on NMR measurements including DEPT. All isolated compounds gave ¹H and ¹³C NMR spectra fully consistent with the indicated structures. Positions of the ³¹P NMR signals were in good conformity with the literature data for the corresponding compounds and were consistent with the expected structures. 18

1.2. Typical procedure for the preparation of glycosyl thiocyanate¹⁰

A mixture of glycosyl bromide (10.0 mM), potassium thiocyanate (30.0 mM) and crown ether (18-crown-6, 300 mg) or [bmim]Cl (350 mg) in acetone (50 mL) was stirred at room temperature for 7 h, and then filtered through Celite and concentrated. Column chromatography (hexane–EtOAc 20:1→7:3) of the residue gave pure glycosyl thiocyanates 1–4.

1.2.1. 2,3,4,6-Tetra-*O*-benzoyl-α-D-mannopyranosyl thiocyanate (4) and 2,3,4,6-tetra-*O*-benzoyl-β-D-mannopyranosyl thiocyanate (3). As the first product, 2,3,4,6-tetra-*O*-benzoyl-D-mannopyranosyl isothiocyanate (29%) was eluted, the second fraction comprised 2,3,4,6-tetra-*O*-benzoyl-α-D-mannopyranosyl thiocyanate (4, 47%) and the third fraction contained 2,3,4,6-tetra-*O*-benzoyl-β-D-mannopyranosyl thiocyanate (3, 16%).

Data for thiocyanate 3: v_{max} (film): 2164 cm⁻¹; $[\alpha]_{\text{D}}^{20}$ -89.2 (c 0.4, CHCl₃); ¹H NMR (CDCl₃) δ : 6.06 (m, 2H, H-2, H-4), 5.66 (m, 2H, H-1, H-3), 4.77 (dd, 1H, $J_{6,5} = 2.6$, $J_{6,6'} = 12.3$ Hz, H-6), 4.55 (dd, 1H, $J_{6',5} = 4.8$ Hz, H-6'), 4.30 (m, 1H, H-5); ¹³C NMR (CDCl₃) δ : 166.0 (C=O), 165.4 (C=O), 165.1 (C=O), 165.0 (C=O), 108.8 (SCN), 83.1 (C-1), 77.5, 72.0, 70.3, 65.5, 62.4 (C-6); HRMS-ESI calcd for $C_{35}H_{27}NNaO_9S$ [M+Na]⁺: 660.1299. Found: 660.1274. Anal. Calcd for $C_{35}H_{27}NO_9S$: C, 65.92; H, 4.27; N, 2.20; S, 5.03. Found: C, 65.90; H, 4.37; N, 2.05; S, 5.14.

1.3. Typical procedure for the Michaelis-Arbuzov rearrangement

A mixture of $(EtO)_2P$ -OTMS (3 equiv) and thiocyanate 1 (1 equiv) was heated under an argon atmosphere in a screw cap tube (for reaction details see Table 1). Column chromatography of the residue (hexane-EtOAc, $9:1 \rightarrow 1:1$) afforded *S*-glycosyl phosphate 5.

1.3.1. O,O'-Diethyl-S-(2,3,4,6-tetra-O-benzoyl-β-D-gluco**pyranosyl)** thiophosphate (5). $[\alpha]_D^{20}$ +50.3 (c 0.5, CHCl₃); ¹H NMR (CDCl₃) δ : 5.94 (t, 1H, $J_{3,2}$ = $J_{3,4} = 9.5 \text{ Hz}, \text{ H-3}, 5.71 \text{ (t, 1H, } J_{4,5} = 9.9 \text{ Hz, H-4}),$ 5.65 (t, 1H, $J_{2.1} = 10.1$ Hz, H-2), 5.42 (dd, 1H, $J_{P,H} =$ 12.5 Hz, H-1), 4.63 (dd, 1H, $J_{6.5} = 2.6$; $J_{6.6'} = 12.4$ Hz, H-6), 4.47 (dd, 1H, $J_{6'5} = 5.4$ Hz, H-6'), 4.28 (m, 1H, H-5), 3.89–4.14 (m, 4H, $2 \times CH_2$), 1.21 (dt, J = 7.1, $J_{\text{H.P}} = 0.9 \text{ Hz}$, 3H, CH₃), 1.11 (dt, J = 7.1, $J_{\text{H.P}} =$ 0.8 Hz, 3H, CH₃); 13 C NMR (CDCl₃) δ : 166.0 (C=O), 165.6 (C=O), 165.1 (C=O), 165.0 (C=O), 83.9 (d, $J_{\text{C.P}} = 3.4 \text{ Hz}, \text{ C-1}, 76.6 \text{ (C-5)}, 73.8 \text{ (C-3)}, 71.2 \text{ (d,}$ $J_{P,C} = 9.5 \text{ Hz}, \text{ C-2}, 69.0 \text{ (C-4)}, 64.0 \text{ (d, } J_{C,P} = 5.2 \text{ Hz},$ CH_2), 63.9 (d, $J_{C.P} = 5.2 \text{ Hz}$, CH_2), 62.9 (C-6), 15.8 (d, $J_{C,P} = 2.6 \text{ Hz}$, CH_3), 15.7 (d, $J_{C,P} = 2.6 \text{ Hz}$, CH_3); ³¹P NMR (CDCl₃) δ : 22.6; HRMS-ESI calcd for $C_{38}H_{37}NaO_{12}PS [M+Na]^+$: 771.1636. Found: 771.1640. Anal. Calcd for $C_{38}H_{37}O_{12}PS$: C, 60.96; H, 4.98; S, 4.28. Found: C, 60.97; H, 4.77; S, 4.35.

- 1.3.2. O,O'-Diethyl-S-(2,3,4,6-tetra-O-benzoyl-β-D-galacto**pyranosyl)** thiophosphate (6). $[\alpha]_{D}^{20}$ +108.6 (*c* 0.5, CHCl₃); ¹H NMR (CDCl₃) δ : 6.05 (dd, 1H, $J_{4,3} = 3.4$, $J_{4,5} < 1.0 \text{ Hz}, \text{ H-4}$, 5.90 (t, 1H, $J_{2,1} = J_{2,3} = 10.0 \text{ Hz}$, H-2), 5.68 (dd, 1H, H-3), 5.44 (dd, 1H, $J_{P,H} = 13.1 \text{ Hz}$, H-1), 4.64 (dd, 1H, $J_{6,5} = 6.7$, $J_{6,6'} = 11.2$ Hz, H-6), 4.48 (m, 1H, H-5), 4.40 (dd, 1H, $J_{6',5} = 5.6$ Hz, H-6'), 3.89–4.15 (m, 4H, $2 \times \text{CH}_2$), 1.22 (dt, J = 7.1, $J_{\text{H.P}} =$ 0.9 Hz, 3H, CH₃), 1.11 (dt, J = 7.1, $J_{H,P} = 0.8$ Hz, 3H, CH₃); 13 C NMR (CDCl₃) δ : 165.9 (C=O), 165.5 (C=O), 165.3 (C=O), 165.2 (C=O), 84.4 (d, $J_{C,P}$ = 4.3 Hz, C-1), 75.7, 72.4, 68.8 (d, $J_{CP} = 9.5 \text{ Hz}$), 68.3, 63.9 (2d, $J_{C,P} = 5 \text{ Hz}$, $2 \times \text{CH}_2$), 62.4 (C-6), 15.8 (2d, $2 \times \text{CH}_3$); ³¹P NMR (CDCl₃) δ : 22.9; HRMS-ESI calcd for $C_{38}H_{37}NaO_{12}PS [M+Na]^+$: 771.1636. Found: 771.1644. Anal. Calcd for C₃₈H₃₇O₁₂PS: C, 60.96; H, 4.98; S, 4.28. Found: C, 60.75; H, 4.83; S, 4.51.
- 1.3.3. O,O'-Diethyl-S-(2,3,4,6-tetra-O-benzoyl-β-D-mannopyranosyl) thiophosphate (7). $\left[\alpha\right]_{D}^{20}$ -80.3 (c 0.5, CHCl₃); ¹H NMR (CDCl₃) δ : 6.01 (m, 2H, $J_{4,3}$ = $J_{4,5} = 10.1 \text{ Hz}, \text{ H-2}, \text{ H-4}, 5.66 \text{ (m, 2H, } J_{1,2} = 1.1,$ $J_{\text{H,P}} = 12.5$, $J_{3,2} = 3.3$ Hz, H-1, H-3), 4.73 (dd, 1H, $J_{6.5} = 2.5$, $J_{6.5} = 12.3$ Hz, H-6), 4.48 (dd, 1H, $J_{6'.5} =$ 4.7 Hz, H-6'), 4.29 (m, 1H, H-5), 4.10-4.25 (m, 4H, $2 \times \text{CH}_2$), 1.33 (dt, 3H, J = 7.1, $J_{\text{H,P}} = 0.8 \text{ Hz}$, CH₃), 1.28 (dt, 3H, J = 7.1, $J_{H,P} = 0.9$ Hz, CH₃); ¹³C NMR $(CDCl_3)$ δ : 166.0 (C=O), 165.5 (C=O), 165.3 (C=O), 165.2 (C=O), 82.4 (d, $J_{C,P} = 2.6$ Hz, C-1), 76.8, 72.6, 71.8 (d, $J_{C,P} = 8.5 \text{ Hz}$), 66.0, 64.3 (d, $J_{C,P} = 5.2 \text{ Hz}$, CH₂), 64.1 (d, $J_{C,P} = 5.6 \text{ Hz}$, CH₂), 62.9 (C-6); ³¹P NMR (CDCl₃) δ : 23.2. HRMS-ESI calcd for C₃₈H₃₇-NaO₁₂PS [M+Na]⁺: 771.1636. Found: 771.1614. Anal. Calcd for C₃₈H₃₇O₁₂PS: C, 60.96; H, 4.98; S, 4.28. Found: C, 60.04; H, 4.93; S, 4.20.
- **1.3.4.** *O,O'*-Diethyl-S-(2,3,4,6-tetra-*O*-benzoyl-α-D-mannopyranosyl) thiophosphate (20). $[\alpha]_D^{20}$ –3.1 (*c* 0.8, CHCl₃); ¹H NMR (CDCl₃) δ: 6.18 (t, 1H, $J_{4,3} = J_{4,5} = 10.0$ Hz, H-4), 6.03 (dd, 1H, $J_{1,2} = 1.7$, $J_{H,P} = 12.5$ Hz, H-1), 5.87 (dd, 1H, $J_{2,3} = 3.2$ Hz, H-2), 5.82 (ddd, 1H, $J_{H,P} = 1.4$ Hz, H-3), 4.67 (m, 2H), 4.53 (m, 1H), 4.25 (m, 4H, 2 × CH₂), 1.38 (m, 6H, 2 × CH₃); ¹³C NMR (CDCl₃) δ: 166.0 (C=O), 165.5 (C=O), 165.3 (C=O), 165.1 (C=O), 83.1 (d, $J_{C,P} = 2.5$ Hz, H-1), 72.4 (d, $J_{C,P} = 9.4$ Hz), 71.4, 69.9, 66.4, 64.3 (2 × d, 2 × CH₂), 62.5 (C-6), 16.0 (2 × d, 2 × CH₃); ³¹P NMR (CDCl₃) δ: 22.1; HRMS-ESI calcd for $C_{38}H_{37}NaO_{12}PS$ [M+Na]⁺: 771.1636. Found: 771.1621. Anal. Calcd for $C_{38}H_{37}O_{12}PS$: C, 60.96; H, 4.98; S, 4.28. Found: C, 60.94; H, 4.82; S, 4.32.

- **1.3.5.** *O*,*O'*-Dibutyl-*S*-(2,3,4,6-tetra-*O*-benzoyl-β-D-glucopyranosyl) thiophosphate (8). 1 H NMR (CDCl₃) δ: 5.93 (t, 1H, $J_{3,2}$ 9.5 = $J_{3,4}$ = 9.5 Hz, H-3), 5.72 (t, 1H, $J_{4,5}$ = 9,8 Hz, H-4), 5.65 (t, 1H, $J_{2,1}$ = 10.1, H-2), 5.43 (dd, 1H, $J_{H,P}$ = 12.5 Hz, H-1), 4.62 (dd, 1H, $J_{6,5}$ = 2.8, $J_{6,6'}$ = 12.3 Hz, H-6), 4.47 (dd, 1H, $J_{6',5}$ = 5.1 Hz, H-6'), 4.27 (m, 1H, H-5); 13 C NMR (CDCl₃) δ: 166.0 (C=O), 165.6 (C=O), 165.1 (C=O), 84.0 (d, $J_{C,P}$ = 3.4 Hz, C-1), 76.6, 73.8, 71.2 (d, $J_{C,P}$ = 10.0 Hz), 62.9 (C-6); 31 P NMR (CDCl₃) δ: 22.8. HRMS-ESI calcd for $C_{42}H_{45}$ NaO₁₂PS [M+Na]⁺: 827.2262. Found: 827.2242.
- **1.3.6.** *O,O'*-Dibutyl-S-(2,3,4,6-tetra-*O*-benzoyl-β-D-galactopyranosyl) thiophosphate (9). ³¹P NMR (CDCl₃) δ: 23.1; HRMS-ESI calcd for $C_{42}H_{45}NaO_{12}PS$ [M+Na]⁺: 827.2262. Found: 827.2269.
- **1.3.7.** *O,O'*-Dibutyl-*S*-(**2,3,4,6**-tetra-*O*-benzoyl-β-D-mannopyranosyl) thiophosphate (**10**). ³¹P NMR (CDCl₃) δ: 23.4. HRMS-ESI calcd for $C_{42}H_{45}NaO_{12}PS$ [M+Na]⁺: 827.2262. Found: 827.2301.
- 1.3.8. O-Methyl-S-(2,3,4,6-tetra-O-benzoyl-β-D-glucopyranosyl) phenylthiophosphonate (11). Obtained as a mixture of diastereoisomers 11a and 11b in a ratio of 1.2:1.0. ¹H NMR (CDCl₃) δ : 5.95 (t, 1H, $J_{3,2} = J_{3,4} =$ 9.5 Hz, H-3, **11b**), 5.88 (t, 1H, $J_{3,2} = J_{3,4} = 9.4$ Hz, H-3, 11b), 5.62-5.75 (m, 4H, H-2, H-4, both isomers), 5.51 (dd, 1H, $J_{1,2} = 10.2$, $J_{H,P} = 11.8$ Hz, H-1, **11b**), 5.32 (t, 1H, $J_{1,2} = J_{P,H} = 10.3 \text{ Hz}$, H-1, 11a), 4.55 (dd, 1H, $J_{6,5} = 2.8$, $J_{6,6'} = 12.4$ Hz, H-6, **11b**), 4.45 (m, 2H, H-6, H-6, both isomers), 4.36 (dd, 1H, $J_{6'5} = 5.2$, $J_{6,6'} = 12.4 \text{ Hz}, \text{ H-6}, 11a), 4.25 \text{ (m, 1H, H-5, 11b)}, 4.17$ (m, 1H, H-5, **11a**), 3.82 (d, 3H, $J_{H,P} = 12.9$ Hz, OCH₃, **11b**), 3.73 (d, 3H, $J_{H,P} = 12.8 \text{ Hz}$, OCH₃, **11a**); ¹³C NMR (CDCl₃) δ : 83.3 (d, $J_{CP} = 2.2 \text{ Hz}$, C-1, 11a), 82.9 (d, $J_{C,P} = 2.6$ Hz, C-1, 11b), 76.6 (11b), 76.5 (11a), 74.0 (11b), 73.8 (11a), 71.2 (d, $J_{C,P} = 7.3 \text{ Hz}$, 11b), 71.1 (d, $J_{C,P} = 8.2 \text{ Hz}$, 11a), 69.1, 63.0 (C-6, 11a), 62.9 (C-6, **11b**), 52.5 (d, $J_{CP} = 6.9 \text{ Hz}$, OCH₃, **11b**), 52.4 (d, $J_{\text{C,P}} = 7.3 \text{ Hz}, \text{ OCH}_3, \text{ 11a}; \text{ }^{31}\text{P NMR (CDCl}_3) \delta: 42.9$ (11a), 41.1 (11b); HRMS-ESI calcd for C₄₁H₃₅NaO₁₁PS $[M+Na]^+$: 789.1530. Found: 789.1551.
- **1.3.9.** *O*-Methyl-*S*-(2,3,4,6-tetra-*O*-benzoyl-β-D-galactopyranosyl) phenylthiophosphonate (12). Obtained as a mixture of diastereoisomers 12a and 12b in a ratio of 1.1:1.0. 1 H NMR (CDCl₃) δ: 6.04 (dd, 1H, $J_{4,3} = 3.4$, $J_{4,5} = 1.1$ Hz, H-4, 12b), 6.01 (dd, 1H, $J_{4,3} = 3.4$, $J_{4,5} = 1.0$ Hz, H-4, 12a), 5.95 (t, 1H, $J_{2,1} = J_{2,3}$ 10.0 Hz, H-2, 12b), 5.89 (t, 1H, $J_{2,1} = J_{2,3}$ 10.0 Hz, H-2, 12a), 5.67 (dd, 1H, H-3, 12b), 5.60 (dd, 1H, H-3, 12a), 5.51 (dd, 1H, $J_{P,H} = 12.1$ Hz, H-1, 12b), 5.33 (dd, 1H, $J_{H,P} = 11.1$ Hz, H-1, 12a), 4.57 (dd, 1H, $J_{6,5} = 6.7$, $J_{6,6'} = 11.1$ Hz, H-6, 12b), 4.48 (dd, 1H, $J_{6,5} = 6.6$,

 $J_{6,6'} = 11.1 \text{ Hz}$, H-6, **12a**); 4.43 (m, 1H, H-5, **12b**); 4.33–4.39 (m, 2H, $J_{6,5} = 6.1 \text{ Hz}$, H-5, H-6), 4.29 (dd, 1H, $J_{6,5} = 5.6 \text{ Hz}$, H-6, **12a**), 3.80 (d, 3H, $J_{P,H} = 12.0 \text{ Hz}$, OCH₃, **12a**), 3.77 (d, 3H, $J_{P,H} = 11.3 \text{ Hz}$, OCH₃, **12b**); ¹³C NMR (CDCl₃) δ : 83.9 (d, $J_{C,P} = 2.6 \text{ Hz}$, C-1, **12a**), 83.2 (d, $J_{C,P} = 3.0 \text{ Hz}$, C-1, **12b**), 75.6, 72.5 (**12b**), 72.4 (**12a**), 68.7 (2 × d), 68.2, 62.3 (C-6, **12a**), 62.1 (C-6, **12b**), 52.7 (d, $J_{C,P} = 5.6 \text{ Hz}$, OCH₃), 52.1 (d, $J_{C,P} = 6.4 \text{ Hz}$, OCH₃); ³¹P NMR (CDCl₃) δ : 42.7 (**12a**), 41.3 (**12b**); HRMS-ESI calcd for C₄₁H₃₅NaO₁₁PS [M+Na]⁺: 789.1530. Found: 789.1555.

1.3.10. O-Methyl-S-(2,3,4,6-tetra-O-benzoyl-β-D-mannopyranosyl) phenylthiophosphonate (13). Obtained as a mixture of diastereoisomers 13a and 13b in a ratio of 1.2:1.0. ¹H NMR (CDCl₃) δ : 6.02 (m, 3H, H-2, H-2, H-4), 5.97 (t, 1H, $J_{4,3} = J_{4,5} = 10.0$ Hz, H-4), 5.77 (dd, 1H, $J_{1,2} = 1.1$, $J_{H,P} = 11.2$ Hz, H-1, **13b**), 5.69 (dd, 1H, $J_{3,2} = 3.3$, $J_{3,4} = 10.3$ Hz, H-3, **13b**), 5.62 (m, 2H, $J_{1,2} = 1.1$, $J_{3,2} = 3.3$, $J_{H,P} = 11.2$ Hz, H-1, H-3, **13a**), 4.70 (dd, 1H, $J_{6,5} = 2.4$, $J_{6,6'} = 12.3$ Hz, H-6, **13b**), 4.54 (dd, 1H, $J_{6,5} = 2.6$, $J_{6,6'} = 12.3$ Hz, H-6, **13a**), 4.47 (dd, 1H, $J_{6',5} = 4.8$ Hz, H-6, **13b**), 4.40 (dd, 1H, $J_{6',5} =$ 4.8 Hz, H-6, **13a**), 4.29 (m, 1H, H-5, **13b**), 4.19 (m, 1H, H-5, **13a**), 3.91 (d, 3H, $J_{H,P} = 12.6 \text{ Hz}$, OCH₃, **13a**), 3.90 (d, 3H $J_{H,P} = 12.8 \text{ Hz}$, OCH₃, **13b**); ¹³C NMR (CDCl₃) δ : 82.1 (bs, $J_{C,P} < 1$ Hz, C-1, **13a**), 81.2 (d, $J_{C.P} = 2.1$ Hz, C-1, 13b), 76.8 (13a), 76.7 (13b), 72.7 (13b), 72.6 (13a), 72.0 (d, $J_{CP} = 6.8 \text{ Hz}$, 13b), 71.8 (d, $J_{\text{C.P}} = 6.8 \text{ Hz}, 13a$, 66.1, 62.9 (C-6, 13a), 62.8 (C-6, **13b**), 52.8 (d, $J_{C,P} = 2.6 \text{ Hz}$, OCH₃), 52.7 (d, $J_{C,P} =$ 2.6 Hz, OCH₃); 31 P NMR (CDCl₃) δ : 43.1 (13a), 41.1 (13b); HRMS-ESI calcd for C₄₁H₃₅NaO₁₁PS [M+Na]⁺: 789.1530. Found: 789.1559. Anal. Calcd for C₄₁H₃₅O₁₁PS: C, 64.22; H, 4.60; S, 4.18. Found: C, 64.51; H, 4.83; S, 3.79.

1.3.11. *O*-Ethyl-S-(2,3,4,6-tetra-*O*-benzoyl-β-D-glucopyranosyl) phenylthiophosphonate (14). Obtained as a mixture of diastereoisomers **14a** and **14b** in a ratio of 1.3:1.0. ¹H NMR (CDCl₃) δ : 5.93 (t, 1H, $J_{3,2} = J_{3,4} = 9.4$ Hz, H-3, **14a**), 5.89 (t, 1H, $J_{3,2} = J_{3,4} = 9.4$ Hz, H-3, **14b**), 5.62–5.74 (m, 4H, H-2, H-4), 5.49 (dd, 1H, $J_{1,2} = 10.1$, $J_{H,P} = 11.9 \text{ Hz}, \text{ H-1}, \text{ 14a}, 5.40 (t, 1H, <math>J_{1,2} = J_{P,H} =$ 10.4 Hz, H-1, **14b**), 4.53 (dd, 1H, $J_{6.5} = 2.8$, $J_{6.6'} =$ 12.3 Hz, H-6, **14a**), 4.42 (m, 2H, H-6, H-6, **14ab**), 4.34 (dd, 1H, $J_{6'5} = 5.0$, $J_{6.6'} = 12.3$ Hz, H-6, **14b**), 4.00– 4.30 (m, other protons), 1.28 (t, 3H, J = 7.1 Hz, CH₃, **14a**), 1.18 (t, 3H, J = 7.1 Hz, CH₃, **14b**); ¹³C NMR (CDCl₃) δ : 83.5 (d, $J_{C,P}$ <1 Hz, C-1, **14b**), 83.0 (d, $J_{\rm CP} = 2.6 \, \text{Hz}, \, \text{C-1}, \, 14a$), 76.6 (14b), 76.5 (14a), 74.0 (14a), 73.8 (14b), 71.2 (2d), 69.1, 63.0 (C-6, 14b), 62.9 (C-6, 14a), 62.6 (2d, $2 \times CH_2$), 16.1 (CH₃, 14b), 16.0 (CH₃, 14a); ${}^{31}P$ NMR (CDCl₃) δ : 40.6 (14b), 38.9 (14a); HRMS-ESI calcd for $C_{42}H_{37}O_{11}NaPS [M+Na]^+$: 803.1686. Found: 803.1725. Anal. Calcd for C₄₂H₃₇- O₁₁PS: C, 64.61; H, 4.78; S, 4.11. Found: C, 64.68; H, 4.52; S, 4.07.

1.3.12. *O*-Ethyl-S-(2,3,4,6-tetra-*O*-benzoyl-β-D-galactopyranosyl) phenylthiophosphonate (15). Obtained as a mixture of diastereoisomers 15a and 15b in a ratio of 1.5:1.0. ¹H NMR (CDCl₃) δ : 6.04 (dd, 1H, $J_{4,3} = 3.4$, $J_{4.5} = 1.0 \text{ Hz}, \text{ H-4}, \text{ 15b}, 6.01 \text{ (dd, 1H, } J_{4.3} = 3.4,$ $J_{4,5} = 1.0 \text{ Hz}, \text{ H-4}, \text{ 15a}, 5.94 \text{ (t, 1H, } J_{2,1} = J_{2,3}$ 10.1 Hz, H-2, **15b**), 5.89 (t, 1H, $J_{2.1} = J_{2.3}$ 10.0 Hz, H-2, 15a), 5.67 (dd, 1H, H-3, 15b), 5.63 (dd, 1H, H-3, **15a**), 5.51 (dd, 1H, $J_{P,H} = 12.1 \text{ Hz}$, H-1, **15b**), 5.42 (dd, 1H, $J_{H,P} = 11.3$ Hz, H-1, **15a**), 4.56 (dd, 1H, $J_{6.5} = 6.6$, $J_{6.6'} = 11.1 \text{ Hz}, \text{ H-6}, \text{ 15b}, \text{ 4.47 (dd, 1H, } J_{6.5} = 6.5,$ $J_{6.6'} = 11.1 \text{ Hz}, \text{ H-6}, \textbf{15a}, 4.43 \text{ (m, 1H, H-5, 15b)}, 4.38$ (m, 1H, H-5, **15a**), 4.00–4.30 (m, other protons), 1.28 (t, 3H, J = 7.0 Hz, CH₃, **15b**), 1.19 (t, 3H, J = 7.0 Hz, CH₃, **15a**); ¹³C NMR (CDCl₃) δ : 84.0 (d, $J_{CP} < 1$ Hz, C-1, **15a**), 83.4 (d, $J_{C.P}$ <1 Hz, C-1, **15b**), 75.6 (**15b**), 75.5 (15a), 72.5 (15b), 72.4 (15a), 68.8 ($2 \times d$), 68.2, $62.6 (2 \times d, 2 \times CH_2), 62.2 (C-6, 15a), 62.1 (C-6, 15b),$ 16.1 (CH₃, **15b**), 16.0 (CH₃, **15a**); ³¹P NMR (CDCl₃) δ : 40.4 (15a), 39.0 (15b); HRMS-ESI calcd for $C_{42}H_{37}O_{11}NaPS [M+Na]^+: 803.1686$. Found: 803.1691. Anal. Calcd for C₄₂H₃₇O₁₁PS: C, 64.61; H, 4.78; S, 4.11. Found: C, 64.52; H, 4.69; S, 4.10.

1.3.13. *O*-Ethyl-*S*-(2,3,4,6-tetra-*O*-benzoyl-β-D-mannopyranosyl) phenylthiophosphonate (16). Obtained as a mixture of diastereoisomers **16a** and **16b** in a ratio of 1.3:1.0. 1 H NMR (CDCl₃) δ: 5.94–6.05 (m), 5.76 (dd, J = 1.0 and 11.1 Hz), 5.62–5.70 (m), 4.69 (dd, J = 2.5 and 12.4 Hz), 4.15–4.53 (m), 1.39 (t, J = 7.0 Hz, CH₃, **16a**), 1.32 (t, J = 7.0 Hz, CH₃, **16b**); 13 C NMR (CDCl₃) δ: 82.1 (C-1, **16a**), 81.3 (C-1, **16b**), 76.7, 72.7, 72.6, 71.9, 71.8, 66.1, 62.9 (CH₂), 16.3; 31 P NMR (CDCl₃) δ: 41.1 (**16a**), 38.8 (**16b**); HRMS-ESI calcd for C₄₂H₃₇O₁₁NaPS [M+Na]⁺: 803.1686. Found: 803.1725. Anal. Calcd for C₄₂H₃₇O₁₁PS: C, 64.61; H, 4.78; S, 4.11. Found: C, 64.55; H, 4.69; S, 4.19.

1.3.14. *O*-Ethyl-*S*-(2,3,4,6-tetra-*O*-benzoyl-α-D-mannopyranosyl) phenylthiophosphonate (21). Obtained as a mixture of diastereoisomers 21a and 21b in a ratio of 1.3:1.0. ¹H NMR (CDCl₃) δ: 6.18 (m, 3H, H-1, H-4), 6.00 (dd, 1H, $J_{1,2} = 0.8$, $J_{H1,P} = 10.4$ Hz, H-1, 21b), 5.90 (dd, 1H, $J_{2,3} = 3.1$ Hz, H-2, 21a), 5.76–5.84 (m, 3H), 4.59 (m, 1H, H-5, 21b), 4.32–4.46 (m, 6H), 4.28 (m, 1H, H-5, 21a), 4.11 (dd, 1H, $J_{6,5} = 1.8$, $J_{6,6'} = 12.5$ Hz, H-6, 21a), 3.95 (dd, 1H, $J_{6',5} = 2.6$ Hz, H-6, 21a), 1.45 (2t, 6H, 2 × CH₃); ¹³C NMR (CDCl₃) δ: 83.2 (C-1, 21a), 82.2 (C-1, 21b), 72.5 (d, $J_{C,P} = 7.7$ Hz, 21b), 71.9 (d, $J_{C,P} = 7.7$ Hz, 21a), 71.0 (21a), 70.6 (21b), 70.2 (21a), 70.1 (21b), 66.3 (21b), 66.2 (21a), 63.3 (d, $J_{C,P} = 6.8$, CH₂, 21a), 62.8 (d, $J_{C,P} = 6.9$ Hz, CH₂, 21a), 62.2 (C-6, 21b), 61.6 (C-6, 21b), 16.3 (21a),

16.2 (**21b**); ³¹P NMR (CDCl₃) δ : 39.2 (**21a**), 39.1 (**21b**); HR-MS (ESI) calcd for C₄₂H₃₇O₁₁NaPS [M+Na]⁺: 803.1686. Found: 803.1724. Anal. Calcd for C₄₂H₃₇O₁₁PS: C, 64.61; H, 4.78; S, 4.11. Found: C, 64.65; H, 4.60; S, 4.24.

1.3.15. S-(2,3,4,6-Tetra-*O*-benzoyl-β-D-glucopyranosyl) diphenylthiophosphinate (17). $[\alpha]_D^{20}$ +43.0 (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃) δ: 5.88 (t, 1H, $J_{3,2} = 9.5$, $J_{3,4} = 9.5$ Hz, H-3), 5.70 (m, 2H, $J_{2,1} = 9.7$ Hz, $J_{4,5} = 9.8$ Hz, H-2, H-4), 5.53 (t, 1H, $J_{PH} = 9.5$ Hz, H-1), 4.16 (m, 2H, H-6, H-6'), 4.01 (m, 1H, H-5); ¹³C NMR (CDCl₃) δ: 165.9 (C=O), 165.5 (C=O), 165.3 (C=O), 165.0 (C=O), 81.2 (C-1), 76.3, 74.1, 71.4 (d, $J_{C,P} = 6.1$ Hz), 68.9, 62.6 (C-6); ³¹P NMR (CDCl₃) δ: 42.4. HRMS-ESI calcd for C₄₆H₃₇NaO₁₀PS [M+Na]⁺: 835.1737. Found: 835.1704. Anal. Calcd for C₄₆H₃₇O₁₀PS: C, 67.97; H, 4.59; S, 3.94. Found: C, 67.68; H, 4.41; S, 4.07.

1.3.16. *S*-(2,3,4,6-Tetra-*O*-benzoyl-β-D-galactopyranosyl) diphenylthiophosphinate (18). $[\alpha]_D^{20}$ +65.5 (*c* 0.4, CHCl₃); ¹H NMR (CDCl₃) δ: 5.97 (m, 2H, $J_{4,3} = 3.3$, $J_{4,5} < 1$ Hz, H-2, H-4), 5.63 (dd, 1H, $J_{3,2} = 9.9$ Hz, H-3), 5.52 (t, 1H, $J_{1,2} = J_{H,P} = 10.3$ Hz, H-1), 4.22 (m, 2H, H-5,6), 4.12 (dd, 1H, $J_{6,5} = 8.7$, $J_{6'6} = 13.1$ Hz, H-6'); ¹³C NMR (CDCl₃) δ: 165.8 (C=O), 165.5 (C=O), 165.4 (C=O), 165.3 (C=O), 81.6 (C-1), 75.2, 72.5, 68.9 (d, $J_{C,P} = 6.8$ Hz), 68.2, 61.6 (C-6); ³¹P NMR (CDCl₃) δ: 42.4; HRMS-ESI calcd for C₄₆H₃₇NaO₁₀PS [M+Na]⁺: 835.1737. Found: 835.1728. Anal. Calcd for C₄₆H₃₇O₁₀PS: C, 67.97; H, 4.59; S, 3.94. Found: C, 67.88; H, 4.63; S, 3.77.

1.3.17. *S*-(2,3,4,6-Tetra-*O*-benzoyl-β-D-mannopyranosyl) diphenylthiophosphinate (19). $[\alpha]_D^{20}$ -74.3 (*c* 0.3, CHCl₃). ¹H NMR (CDCl₃) δ: 6.02 (m, 2H, $J_{4,3} = J_{4,5} = 10.1$ Hz, H-2, H-4), 5.73 (dd, 1H, $J_{1,2} = 1.1$, $J_{H,P} = 10.5$ Hz, H-1), 5.64 (dd, 1H, $J_{3,2} = 3.3$ Hz, H-3), 4.29 (dd, 1H, $J_{6,5} = 2.7$, $J_{6,6'} = 12.2$ Hz, H-6), 4.22 (dd, 1H, $J_{6',5} = 3.7$ Hz, H-6'), 3.99 (m, 1H, H-5); ¹³C NMR (CDCl₃) δ: 165.9 (C=O), 165.3 (C=O), 165.2 (C=O), 165.1 (C=O), 79.6 (d, $J_{C,P} = 1.7$ Hz, H-1), 76.5, 72.6, 72.2 (d, $J_{C,P}$ 6.0 Hz), 65.9, 62.5 (C-6); ³¹P NMR (CDCl₃) δ: 43.1; HRMS-ESI calcd for $C_{46}H_{37}$ -NaO₁₀PS [M+Na]⁺: 835.1737. Found: 835.1726. Anal. Calcd for $C_{46}H_{37}$ O₁₀PS: C, 67.97; H, 4.59; S, 3.94. Found: C, 67.71; H, 4.62; S, 4.20.

1.3.18. *S*-(**2,3,4,6**-Tetra-*O*-benzoyl-α-**D**-mannopyranosyl) diphenylthiophosphinate (**22**). ¹³C NMR (CDCl₃) δ: 165.9 (C=O), 165.5 (C=O), 165.1 (C=O), 164.8 (C=O), 81.4 (C-1), 72.0 (d, J=6.8 Hz), 70.8, 70.4, 66.3, 61.8 (C-6); ³¹P NMR (CDCl₃) δ: 40.6; HRMS-ESI calcd for $C_{46}H_{37}NaO_{10}PS$ [M+Na]⁺: 835.1737. Found: 835.1721.

1.3.19. 2,3,4,6-Tetra-*O***-benzoyl-1-thio-** α **-D-mannopyranose (23).** $[\alpha]_D^{20} - 30.5$ (c 0.5, CHCl₃); Lit: $[\alpha]_D^{20} - 30.5$ (c 1.0, CHCl₃); $[\alpha]_D^{10} - \beta$ 1 H and $[\alpha]_D^{10$

Acknowledgement

This work was supported by Grant 3 TO9A 110 29 from the Ministry of Science and Higher Education, Poland.

References

- (a) Toshima, K.; Tatsuta, K. Chem. Rev. 1993, 93, 1503–1531;
 (b) Nicolaou, K. C.; Mitchell, H. J. Angew. Chem., Int. Ed. Engl. 2001, 40, 1576–1624.
- (a) Nepogodev, S. A.; Pakulski, Z.; Zamojski, A.; Holst, O.; Brade, H. Carbohydr. Res. 1992, 232, 33–45; (b) Pakulski, Z. Synthesis 2003, 2074–2078; (c) Pakulski, Z. Pol. J. Chem. 2005, 79, 361–367; (d) Blattner, R.; Furneaux, R. H.; Pakulski, Z. Carbohydr. Res. 2006, 341, 2115–2125.
- 3. Piekutowska, M.; Pakulski, Z. *Tetrahedron Lett.* **2007**, *48*, 8482–8486.
- (a) Michalska, M.; Michalski, J.; Orlich, I. Bull. Acad. Pol. Sci. Ser. Chim. 1974, 22, 1053–1057; (b) Michalska, M.; Michalski, J.; Orlich, I. Tetrahedron 1978, 34, 617–622; (c) Chmielewski, M.; BeMiller, J. N. Carbohydr. Res. 1981, 96, 73–78; (d) Lipka, P.; Michalska, M. Carbohydr. Res. 1983, 113, 317–320; (e) Kudelska, W. Pol. J. Chem. 1997, 71, 1548–1552; (f) Kudelska, W. Z. Naturforsch. 1998, 53b, 1277–1280; (g) Cipolla, L.; Redaelli, C.; Faria, I.; Nicotra, F. J. Carbohydr. Chem. 2006, 25, 163–171; (h) Kulesza, A.; Frank, C. G.; Aebi, M.; Vasella, A. Helv. Chim. Acta 2004, 87, 3106–3118; (i) Knapp, S.; Ajayi, K. Tetrahedron Lett. 2007, 48, 1945–1949.
- (a) Borowiecka, J.; Michalska, M. Synthesis 1996, 858–862; (b) Borowiecka, J. Liebigs Ann. Recl. 1997, 2147–2150; (c) Kudelska, W. Carbohydr. Res. 2000, 329, 687–691; (d) Borowiecka, J.; Stańczak, A. Il Farmaco 2001, 56, 257–262.
- Hall, C. R.; Inch, T. D.; Pottage, C.; Williams, N. E. J. Chem. Soc., Perkin Trans. 1 1983, 1967–1975.
- Bhattacharya, A. K.; Thyagarajan, G. Chem. Rev. 1981, 81, 415–430.
- (a) Michalski, J.; Wieczorkowski, J. Bull. Acad. Pol. Sci. Cl. III 1956, 4, 279–282; (b) Sheppard, W. A. J. Org. Chem. 1961, 26, 1460–1462; (c) Pilgram, K.; Phillips, D. D. J. Org. Chem. 1965, 30, 2388–2392.
- (a) Ivanova, Z. M.; Kim, T. V.; Boldeskul, I. E.; Gololobov, Y. G. Zh. Obshch. Khim. 1979, 49, 1464–1470; (b) Cooper, D.; Trippett, S.; White, C. J. Chem. Res. (S) 1983, 234–235; (c) Yarmukhamedova, D. K.; Shtyrlina, A. A.; Dubinina, N. P. Zh. Obshch. Khim. 1983, 53, 1755–1757; (d) Yarmukhamedova, D. K.; Gilmanova, G. K.; Buchin, P. I.; Cheplanova, I. V. Khim. Pharm. Zh. 1986, 20, 571–573; (e) Kamalov, R. M.; Stepanov, G. S.; Pudovik, M. A.; Pudovik, A. N. Zh. Obshch. Khim. 1990, 60, 476–477; (f) Nuretdinova, O. N.; Novikova, V. G.; Troitskaja, L. B. Izv. Akad. Nauk, Ser. Khim. 1992, 2673–2675; (g) Timperley, C. M.; Saunders, S. A.; Szpalek, J.; Waters, M. J. J. Fluorine Chem. 2003, 119, 161–171.
- Pakulski, Z.; Pierożyński, D.; Zamojski, A. *Tetrahedron* 1994, 50, 2975–2992.

- 11. (a) Kochetkov, N. K.; Klimov, E. M.; Malysheva, N. N.; Demchenko, A. V. Tetrahedron Lett. 1989, 30, 5459-5462; (b) Kochetkov, N. K.; Klimov, E. M.; Malysheva, N. N.; Demchenko, A. V. Bioorg. Khim. 1990, 16, 701-710; (c) Kochetkov, N. K.; Klimov, E. M.; Malysheva, N. N.; Demchenko, A. V. Dokl. Akad. Nauk SSSR 1991, 321, 1203-1207; (d) Kochetkov, N. K.; Malysheva, N. N.; Klimov, E. M.; Demchenko, A. V. Dokl. Akad. Nauk SSSR 1991, 320, 634–637; (e) Klimov, E. M.; Demchenko, A. V.; Malysheva, N. N.; Kochetkov, N. K. Bioorg. Khim. 1991, 17, 1660-1664; (f) Kochetkov, N. K.; Klimov, E. M.; Malysheva, N. N.; Demchenko, A. V. Carbohydr. Res. 1991, 212, 77-91; (g) Kochetkov, N. K.; Malysheva, N. N.; Klimov, E. M.; Demchenko, A. V. Tetrahedron Lett. 1992, 33, 381-384; (h) Kochetkov, N. K.; Klimov, E. M.; Malysheva, N. N.; Demchenko, A. V. Carbohydr. Res. 1992, 232, C1-C5; (i) Kochetkov, N. K.; Klimov, E. M.; Malysheva, N. N.; Demchenko, A. V. Carbohydr. Res. **1993**, 242, C7–C10.
- (a) Bock, K.; Lundt, I.; Pedersen, C. Tetrahedron Lett.
 1973, 1037–1040; (b) Bock, K.; Pedersen, C. J. Chem. Soc., Perkin Trans. 2 1974, 293–297; (c) Bock, K.; Pedersen, C. Acta Chem. Scand. 1975, B29, 258–264.
- 13. (a) Afarinkia, K.; Rees, C. W.; Cadogan, J. I. G. *Tetrahedron* **1990**, *46*, 7175–7196; (b) Renard, P.-Y.;

- Vayron, P.; Mioskowski, C. Org. Lett. 2003, 5, 1661–1664; (c) Onys'ko, P. P.; Maidanovich, N. K.; Sinitsa, A. D. Russ. J. Gen. Chem. 2004, 74, 1350–1353; (d) Hansen, H. I.; Kehler, J. Synthesis 1999, 1925–1930; (e) Pudovik, A. N.; Konovalova, I. V. Synthesis 1979, 81–96; (f) Thottathil, J. In Handbook of Organophosphorus Chemistry; Engenl, R., Ed.; Marcel Dekker: New York, 1992.
- Van den Berg, G. R.; Platenburg, D. H. J. M.; Benschop, H. P. Chem. Commun. 1971, 606–607.
- Issleib, K.; Walther, B. J. Organometal. Chem. 1970, 22, 375–386.
- Krüger, A.; Pyplo-Schnieders, J.; Redlich, H.; Winkelmann, P. Coll. Czech. Chem. Commun. 2004, 69, 1843–1876
- (a) Vasyanina, M. A.; Khairullin, V. K. Zh. Obshch. Khim.
 1972, 42, 2644–2648; (b) Horner, L.; Gehring, R.; Lindel, H. Phosph. Sulfur 1981, 11, 349–356; (c) Bunton, C. A.; Gillitt, N. D.; Kumar, A. J. Phys. Org. Chem. 1997, 10, 221–228.
- (a) CRC Handbook of Phosphorus-31 Nuclear Magnetic Resonance; Tebby, J.C., Ed.; CRC Press: Boca Raton, FL, 1991; (b) Quin, L.D.; Williams, A.J. Practical Interpretation of P-31 NMR Spectra and Computer Assisted Structure Verification; Advanced Chemistry Development: Toronto, 2004.